An Electrically Switchable Metal-Organic Framework

نویسندگان

  • Carlos A. Fernandez
  • Paul C. Martin
  • Todd Schaef
  • Mark E. Bowden
  • Praveen K. Thallapally
  • Liem Dang
  • Wu Xu
  • Xilin Chen
  • B. Peter McGrail
چکیده

Crystalline metal organic framework (MOF) materials containing interconnected porosity can be chemically modified to promote stimulus-driven (light, magnetic or electric fields) structural transformations that can be used in a number of devices. Innovative research strategies are now focused on understanding the role of chemical bond manipulation to reversibly alter the free volume in such structures of critical importance for electro-catalysis, molecular electronics, energy storage technologies, sensor devices and smart membranes. In this letter, we study the mechanism for which an electrically switchable MOF composed of Cu(TCNQ) (TCNQ = 7,7,8,8-tetracyanoquinodimethane) transitions from a high-resistance state to a conducting state in a reversible fashion by an applied potential. The actual mechanism for this reversible electrical switching is still not understood even though a number of reports are available describing the application of electric-field-induced switching of Cu(TCNQ) in device fabrication.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Electrically switchable cylindrical Fresnel lens based on holographic polymer-dispersed liquid crystals using a Michelson interferometer

Fabricating an electrically switchable cylindrical Fresnel lens based on holographic polymer-dispersed liquid crystals (H-PDLC) using a Michelson interferometer is reported. Simplicity of the method and possibility of fabricating different focal length lenses in a single set up are among the advantages of the method. It is demonstrated that the Fresnel structured zone plate acts as a cylindrica...

متن کامل

Highly mesoporous metal–organic framework assembled in a switchable solvent

The mesoporous metal-organic frameworks are a family of materials that have pore sizes ranging from 2 to 50 nm, which have shown promising applications in catalysis, adsorption, chemical sensing and so on. The preparation of mesoporous metal-organic frameworks usually needs the supramolecular or cooperative template strategy. Here we report the template-free assembly of mesoporous metal-organic...

متن کامل

Thin Film Thermoelectric Metal-Organic Framework with High Seebeck Coefficient and Low Thermal Conductivity A new thermoelectric material with high Seebeck coefficient and low thermal conductivity is demonstrated based on an electrically conducting metal–organic framework

Thin Film Thermoelectric Metal-Organic Framework with High Seebeck Coefficient and Low Thermal Conductivity Report Title A new thermoelectric material with high Seebeck coefficient and low thermal conductivity is demonstrated based on an electrically conducting metal–organic framework (MOF) using the guest@MOF concept. This demonstration opens a new avenue for the future development of thermoel...

متن کامل

Catalytic Aerobic Oxidation of Alkenes by Ag@Metal Organic Framework with High Catalytic Activity and Selectivity

By coupling of Fe2O3@SiO2 particles with metal organic Framework (MOF) the magnetic MOF structure was fabricated. Precipitation and hydrothermal methods were applied for synthesis of core and MOF. Silver nanoparticles were deposited on nickel based metal organic framework surface and magnetic Fe2O3@SiO2@MOF@Ag was obtained. Because of strong coupling between silver nanoparticles and metal organ...

متن کامل

Electrically Induced Breathing of the MIL-53(Cr) Metal–Organic Framework

The breathing behavior of the MIL-53(Cr) metal-organic framework (MOF) has been explored previously upon guest-adsorption and thermal and mechanical stimuli. Here, advanced molecular simulations based on the use of an accurate force field to describe the flexibility of this porous framework demonstrate that the application of an electrical field induces the structural switching of this MOF lead...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2014